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We study the glass transition by exploring a broad class of kinetic rules that can significantly
modify the normal dynamics of super-cooled liquids, while maintaining thermal equilibrium. Beyond
the usual dynamics of liquids, this class includes dynamics in which a fraction (1 − fR) of the
particles can perform pairwise exchange or ‘swap moves’, while a fraction fP of the particles can
only move along restricted directions. We find that (i) the location of the glass transition varies
greatly but smoothly as fP and fR change and (ii) it is governed by a linear combination of fP and
fR. (iii) Dynamical heterogeneities (DH) are not governed by the static structure of the material,
their magnitude correlates instead with the relaxation time. (iv) We show that a recent theory for
temporal growth of DH based on thermal avalanches holds quantitatively throughout the (fR, fP )
diagram. These observations are negative items for some existing theories of the glass transition,
particularly those reliant on growing thermodynamic order or locally favored structure, and open
new avenues to test other approaches, as we illustrate.

Understanding why liquids glass formers cease to flow
near their glass transition Tg remains a challenge. At that
point, the relaxation time τα beyond which stress relaxes
is of order of minutes, which is fifteen decades larger than
at high temperatures. From τα, the activation energy Ea

can be defined as τα = t0 exp(Ea/T ), where t0 is a micro-
scopic time scale and T is the temperature (in the units
of the Boltzmann constant). In liquids called fragile, Ea

can increase five-fold or more under cooling [1–4]. As the
dynamics slows down, it also becomes more and more
heterogeneous, corresponding to a growing length scale
ξ [5–8]. Contrasting theories seek to explain these two
facts. In the first class of views, including Adam-Gibbs
[9] and Random First Order Theory (RFOT) [10–12], the
increase of activation energy stems from the emergence of
some order on a growing length ξ, that must be destroyed
by cooperative motion on that scale to relax the mate-
rial. Ea can then be expressed in terms of purely ther-
modynamic quantities, independently of the kinetic rules
governing the dynamics. Some real space approaches as-
sociate such a growing order to locally favored structures
[13, 14]. A second viewpoint seeks to capture the mecha-
nism of dynamical facilitation, whereby the relaxation of
a given region speeds up the relaxation of regions nearby.
Kinetically constrained models [15, 16], such as the East
model, capture this effect and suggest a scenario [17–
19] in which thermodynamics plays almost no role, but
dynamics is heterogeneous and the growth of activation
energy stems from non-local rearrangements taking place
over ξ. At odds with these two views, a third approach
that includes free volume [20] or elastic [21–24] models,
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assumes that the activation energy is not controlled by a
growing length scale. Instead, it is governed by the en-
ergy cost of elementary rearrangements of a few particles
jumping over a barrier. The elastic coupling between re-
arrangements [25–33] leads to a correlated dynamics [34]
that can be described in terms of avalanches of activated
events [35].

Molecular dynamics simulations of models of super-
cooled liquids have been extremely informative to char-
acterize the glass transition [36], yet distinct views on
this phenomenon have been hard to definitely contrast
[12]. Our present goal is to show that for some popu-
lar models of liquids, a very broad class of kinetic rules
can be considered, which can continuously (and very sig-
nificantly) speed up or slow-down the normal dynamics,
while preserving thermal equilibrium. Although these
rules would be hard to implement in actual experiments,
they are equivalent to dynamics with purely local rules,
and as such theories of the glass transition should apply
to them. This approach thus opens an avenue to test
more stringently theories of glassy dynamics. Specifi-
cally, our work builds on ‘swap’ Monte Carlo algorithms.
In these algorithms, pairs of particles can exchange posi-
tions, in addition to their usual translation moves [37–41].
For continuously polydisperse systems, these algorithms
can speed up the dynamics by 15 orders of magnitude
or more [41], and can change the glass transition tem-
perature Tg by up to a factor of two. It allows one to
explore glasses with a stability similar to that reached in
experiments.

Our central result is to introduce a family of kinetic
rules, where a fraction fR of the particles cannot swap,
and a fraction fP of the particles can only move along
randomly-chosen hyperplanes. We provide systematic
measurements of the dynamics in the (fR, fP ) diagram
in two and three dimensions, that includes the normal
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FIG. 1: Diagram indicating the number of degrees of freedom for spatial dimension d = 2 (a) and d = 3 (c) as a
function of the fraction fR of particles that cannot swap and the fraction fP of particles whose translation motion is
restricted. Panel (b) shows the particles positions at various time points within some time interval for d = 2.
Particles that can move freely in all direction are shown in red, and particles that are restricted to linear motion
appear in blue. For d = 3, this constraint is more gentle, as particles can still move on planes as sketched in (c).

dynamics (1, 0) as well as swap (0, 0). Overall, our obser-
vations are negative items for theories based on a growing
thermodynamic order. We discuss how devoted studies
could be used in these models to test alternative views of
the glass transition.

Changing continuously the kinetic rules of liquids:
Swap moves lead to a considerable speed up of the dy-
namics [37, 40, 41]. Importantly, despite its apparent
non-local character, swap dynamics can be conceived as
a purely local dynamics. Following [37, 42, 43], swap
is equivalent to considering identical particles endowed
with an additional ‘breathing’ degree of freedom, allowing
them to change their size according to some chemical po-
tential µ(R). Indeed, letting pairs of particles exchange
is equivalent, in the thermodynamic limit, to letting in-
dividual particles exchange with a bath of particles of all
possible sizes R. µ(R) is then chosen to obtain the de-
sired polydispersity, which is continuous for continuously
poly-disperse particles [37, 42]. Adding such a degree
of freedom per particle dramatically softens the energy
landscape [42, 44–46] while preserving thermodynamic
and structural properties. It also affects the dynamics:
following the center of the particles, and considering that
a swap move corresponds to a change of the size of two
particles but not of their position, leads to the following
observation. Dynamical correlations grow under cooling
as for the normal dynamics, but the correlation length
starts growing at a much smaller temperature [41]. To
study more systematically such effects and their conse-
quences, following [47] we vary the parameter fR ∈ [0, 1],
characterizing the number of particles that cannot swap.
Unlike [47], we do not consider that particles that swap
positions perform a jump, as it leads to very different
dynamics.

Following this logic, we propose to add even more
kinetic constraints by restricting the motion of a frac-
tion fP ∈ [0, 1] of the particles, as illustrated in Fig.1.
Each such particle is forbidden to move along one ran-
dom direction associated to it, and for an infinite system

they would be each confined along a random hyperplane.
Overall, the number of degrees of freedom for a system
of N particles is then N(d − fP + 1 − fR). Note that
for the periodic boundary condition we consider below,
this dynamics is ergodic as such hyperplanes visit the
neighborhood of any point with probability one, if their
orientation is randomly chosen. For dynamics that sat-
isfy detailed balance like ours, it ensures that thermal
equilibrium will eventually be reached. Thus structural
and thermodynamic properties are only governed by ϕ,
independently of the choices of kinetic rules embodied in
(fR, fP ). Note that other procedures were proposed to
reduce the number of degrees of freedom, such as pin-
ning particles starting from an equilibrated system as
proposed e.g. in [48]. Yet in that case ergodicity is ob-
viously broken once pinned particles are chosen, and the
dynamical properties of the system are not translation-
invariant anymore.

In the present work, we specifically perform Monte
Carlo simulations of systems with N continuously poly-
disperse hard spheres particles of packing fraction ϕ in
a regular box of linear size L, with periodic boundary
conditions. For hard particles, instead of temperature, ϕ
is the good controlled parameter. The choice of polydis-
persity together with other numerical details are shown
in the Appendix A. Figure 1-(a,c) shows a schematic di-
agram of the different dynamics we explore in d = 2 and
d = 3 respectively, and indicate in color the associated
number of degrees of freedom. Figure1-(b) illustrates an
example of the particles trajectories at a short time for
d = 2, revealing which particles are restricted to linear
motion, and which ones are not.

Dependence of the glass transition packing fraction ϕG

with kinetic rules: For d = 3, our choice of polydisper-
sity and Monte-Carlo algorithm follows closely previous
works [41, 49], where it was shown that swap can speed
up the dynamics by 15 decades or more. Here we observe
a giant speed up of swap in our d = 2 system as well, as
documented in Appendix B. We consider the dynamics on
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FIG. 2: τα/τ
∗
α as function of ϕ for different values of fR and fP for d = 2 (a) and d = 3 (e). From these curves, ϕG as

a function of fR and fP is extracted, as indicated in color for d = 2 (b) and d = 3 (f). The discs mark the simulation
data, from which extrapolations are made. (c,g) show ϕG as a function of the number of degrees of freedom per
particle d+ 1− fR − fP and (d,h) show that ϕG can be collapsed as a function of an effective number of constraints
x = fP +C(d)fR, with C(2) = 0.45, and C(3) = 0.70. The normal dynamics is marked as a red square in these plots.

the full phase diagram (fR, fP ). Fig.2-(a,e) show τα vs ϕ
for such dynamics as the parameters (fR, fP ) are varied,
both for d = 2 and d = 3. Fig.2-(b,f) represents the cor-
responding value of ϕG in color, as extrapolated from the
different measurements made as indicated by circles. The
most remarkable results are that (i) ϕG varies very signif-
icantly, and continuously throughout the phase diagram.
In particular, there is no evidence for a region surround-
ing the normal dynamics where kinetic constraints would
not matter and ϕG would plateau. The normal dynamics
can be made continuously faster or slower. (ii) Observing
these two diagrams, it is apparent that most of the varia-
tion of ϕG is captured by a linear combination of fR and
fP .This hypothesis is tested in Fig.2-(d,h), where it is
shown that ϕG(fR, fP ) = ϕG(x), where x can be thought
of as an effective number of constraints x = fP +C(d)fR,
where the coefficient C(d) ⩽ 1 characterize the relative
effect of breathing degrees of freedom v.s. translational
ones. (iii) qualitative observations are independent of the
spatial dimension d.

Dynamical heterogeneities are not governed by struc-
tural properties: Various theoretical approaches propose
that dynamical heterogeneities are controlled by equi-
librated structural properties, such as the extension of
locally-favored structure [13, 14] or a point to set length
[11, 12] entering RFOT (although additional effects such
as facilitation can be added to this theory to increase
further dynamical correlations, see e.g. [50] for a recent
discussion). In our set-up, these properties depend only
on ϕ, and not on the values of parameters fR, fP . Here
instead we find that for the relaxation times we can probe
and the system we consider, the dynamical susceptibil-
ity χ4 characterizing the magnitude of dynamical hetero-
geneities are not governed by ϕ only, but instead depend
strongly on fR, fP as illustrated in Fig.3(a). Much less

FIG. 3: (a) Maximum χ∗
4 of the dynamic susceptibility

χ4(t) for d = 3 as a function of ϕ as fR as is varied
indicated in legend, and fP = 0. (b) χ∗

4/χ4
∗(ϕ = 0.4) as

a function of ϕ/ϕG. Comparing (a) and (b) reveals that
ϕ/ϕG is a much better predictor of DH than ϕ. (c)
Coarsening length lc for d = 2 v.s. ln(t) as ϕ is varied,
for different values of fR indicated in legend (d) for
fP = 0 and t ≤ τα/3. (d) lc collapses when axis are
rescaled as predicted by Eq.1. The full black line is the
theoretical prediction lc = a

√
χ∗
4[ln(τα/t)]

−1 with
a = 9.5.

variation in χ4 is found when plotted as a function of
ϕ/ϕG as shown in Fig.3(b).
These results indicate that heterogeneities are not con-

trolled by a length scale that would directly appear in
the structure. Indeed, dynamical correlations are small
for the swap dynamics at significant packing fraction for
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which the normal dynamics is already very correlated
[41]. Thus, although locally favored structure may af-
fect dynamical heterogeneities in specific systems (such
as two-dimensional systems of discs that can display hex-
atic order [14]), it does not appear to be the case for con-
tinuously polydisperse particles, at least in the range of
time scale that can be probed numerically.

The temporal evolution of DH follows that of thermal
avalanches: Starting from a reference equilibrated con-
figuration, coloring rearranging regions reveals a coars-
ening phenomenon [51, 52] and a growing length scale
lc(t), as shown in Fig.3. Quantitatively we define lc(t) =
⟨l3⟩t/⟨l2⟩t where the average ⟨⟩t is made on all clusters of
connected relaxed particles at time t, and l is the square
root of the number of particles involved in a cluster. In
[35], a description of this coarsening based on facilitation
via thermal avalanches of local activated rearrangements
was proposed. It was refined and also argued to apply
to creep flows in elastic manifolds in [53], and implies for
t ≪ τα and lc much smaller than the system size:

lc ∼ ξ [ln(τα/t)]
−1/(σ̃d̃f ) (1)

where ξ is the correlation length, σ̃ some exponent and
d̃f is the fractal dimension of the clusters. In this view,

ξd̃f ∼ χ∗
4 which characterizes the typical cluster volume.

For d = 2, d̃f ≈ 2 and σ̃ ≈ 1/2 [35], leading to lc ∼√
χ∗
4 [ln(τα/t)]

−1
. As shown in Fig.3(d), this prediction

works remarkably well, independently of fR. It supports
that thermal avalanches cause DH independently of the
kinetic rules chosen.

Discussion: Swap Monte Carlo algorithms can be re-
stricted to local moves with no significant effects on the
dynamics [41]. More fundamentally, they are equivalent
to a purely local kinetic rule where particles can adapt
their radii [37, 42]. For theories based on a growing or-
der on some length ξcoop such as RFOT, or approaches
based on locally favored structures, barriers are cooper-
ative and can be expressed in terms of thermodynamic
quantities alone. They should be present for any local
kinetic rules [46], including those studied here. Thus
in these approaches, the core mechanism slowing down
the dynamics near the glass transition should not depend
on the choice of (fR, fP ). Authors in [54] acknowledged
that swap and normal dynamics should asymptotically
relax at the same pace according to RFOT, but countered
that pre-asymptotic corrections (not currently described
within this theory) may cause the observed difference.

The main difficulty with this view is that the dynam-
ics is very different as the parameters (fR, fP ) change:
as shown in Fig.5, these dynamics do not become equiv-
alent even after a slowing down of 15 decades accessible
experimentally. To have predictive power, RFOT or the-
ories based on thermodynamic quantities should spec-
ify a value for the parameters (fR, fP ) for which they
apply. However, currently they don’t. Our observation
that ϕG continuously depends on (fR, fP ), and does not

plateau to some constant value around the normal dy-
namics (1, 0), shows that the normal dynamics is just
one among many other dynamics. This point underlines
the lack of predictive power of RFOT or related theories
- at least for the systems of continuously polydisperse
particles studied here.

By contrast, for theories based on kinetic constraints
or on local barriers (known to depend on kinetic rules
[42]), the fact that ϕG should continuously vary with the
amount of constraints is evident. The normal dynamics
is slower simply because it is a kinetically constrained
version of swap dynamics.

Conclusion: RFOT is a mean-field theory of the glass
transition, which has shown undeniable successes. It is
exact in infinite dimension [55, 56], correctly captures as-
pects of the thermodynamics of super-cooled liquids [57],
and presents a dynamical transition [11, 58, 59] akin to
mode coupling theory, that describes some aspects of liq-
uid dynamics at intermediate temperatures [60]. Yet our
results support that its description of activation near the
glass transition does not apply for the continuously poly-
disperse systems studied here. Although our conclusions
are restricted to these specific systems where swap is so
performant, these models are known to capture the key
facts associated with the glass transition [52].

The model we introduced, with its very large varia-
tion of dynamics with different kinetic rules, offers new
opportunities to test different theories of the glass tran-
sition, extending previous observations that were only
considered for a single kinetic rule. As an illustration,
we showed that the time evolution of dynamical het-
erogeneities follow a description of facilitation based on
thermal avalanches of local rearrangements [35] indepen-
dently of the kinetic rules chosen, emphasizing the ro-
bustness of this theory. Other debated issues that this
model would help resolve include what observable pre-
dicts best the regions which will flow first, the so-called
dynamical propensity, for which many candidates were
proposed [23, 61–63]. Likewise, numerical tests put for-
ward to test theories of the slowing down of the dynamics
(i.e. how the activation energy Ea depends on temper-
ature or packing fraction) can now be made much more
stringent. The list includes kinetically constrained or lat-
tice gas models [64], that can be tested by analyzing irre-
versible events [65]. Furthermore, the notion that glassy
dynamics correspond to local rearrangements was sup-
ported by the measurement of the density of state of local
barriers [24]; and these barriers were argued to be gov-
erned alternatively by global [21] or local [22] elasticity,
or by the amplitude of vibrational motion [66]. Varying
(fR, fP ) in these measurements will indicate which view-
point is most likely correct. Overall, we have added an
axis to the glass transition problem by varying contin-
uously kinetic rules, affecting strongly observations and
giving a new handle to decide which theory of the glass
transition actually applies.
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Appendix A: Numerical Details

We use for system sizes Nd=2 = 484 and Nd=3 = 512,
which allow to perform extensive simulations as ϕ, fP and
fR are varied, while having small finite-size effects for the
dynamical range considered [67]. Our Monte Carlo algo-
rithm follows previous choices [41]: it involves displace-
ments and swap moves, where the latter are attempted
with a probability of 20%. The magnitude δl of trans-
lation moves is chosen such that the acceptance ratio is
75%.

To achieve rapidly equilibration for any choice of
(ϕ, fR, fP ), we first use our fastest Monte Carlo, corre-
sponding to (ϕ, fR = 0, fP = 0). Then our algorithm
is run with the desired values of (fR, fP ) for 109 Monte
Carlo steps. To check that equilibration was reached, we
compare relevant observables (such as correlation func-
tions) in the first and second half of the run, and test for
consistency.

The magnitude of the effect of the SWAP in speeding
up the dynamics is affected by the width of the particle
radii distribution. The degree of polydispersity is quan-

tified as in [41] by some quantity δ =
√

⟨σ2⟩ − ⟨σ⟩2/⟨σ⟩,
where ⟨σ⟩ is the average diameter of the packing which
our unit length. In this work we use packings with sizes
distribution shown in Fig. 4, which have polidispersity
19% and 23% for d = 2 and d = 3 respectively.

FIG. 4: Initial radius distribution for the (a) 2D system
and (b) 3D system.

Appendix B: The effect of the continuous swap

In order to characterize the dynamics of the system
for d = 3 we consider the usual self-scattering corre-
lation function Fs(k, t) =

〈
1
N

∑
i e

ik·[rj(t)−rj(0)]
〉
, where

rj(t) is the position of the particle j at time t and the
wave vector k satisfies |k| = 2π/⟨σ⟩. For d = 2, this
definition is not well-suited (long-wavelength vibrational
modes bring Fs(k, t) to zero for large t and N , even
in a crystal). This problem is fixed as is usually done
by considering the relative motion of particle with re-
spect to their neighbors. It can be achieved by intro-
ducing the correlation C(t) = 1

N

∑
i C

i(t), with Ci(t) =
1

ni(t)

∑
⟨ij⟩ W (1 − |(rj(t)−rj(t0))−(ri(t)−ri(t0))|

⟨R⟩ ) where ⟨R⟩
is the average radius of the particles, ni(t) is the num-
ber of neighbors of the particle i at time t- defined as all
particles j for which |rj(t)− ri(t)| < 2.4⟨R⟩, an estimate
of the first shell of neighbors, and W (x) is the Heavi-
side function. To extract a relaxation time τα, Fs(k, t)
and C(t) are fitted with an stretched exponential func-
tion f(t) = exp(−(t/τα)

β), where τα is the relaxation
time. The glass packing fraction ϕG(fR, fP ) is then de-
fined such that τα = τ∗α ≡ 107 Monte Carlo steps per par-
ticle. The associated stretch exponents βG are reported
in the Appendix as a function of (fR, fP ).
Speed up: For d = 3, our choice of polydispersity and

Monte-Carlo algorithm follows closely previous works
[41, 49], where it was shown that swap can speed up
the dynamics by 15 decades or more. Here we observe a
giant speed up in our d = 2 system as well, that continu-
ously builds up as fR decreases toward the swap case
fR = 0 starting from the normal dynamics fR = 1.
Fig.5, in Appendix B, shows the relaxation times τα –
extracted from correlation functions as recalled in Ap-
pendix C – as a function of the packing fraction ϕ for
different values of fR. It is notable that τα depends
very significantly on fR, but that this dependence is con-
tinuous. Finally, the speed-up of swap can be approx-
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http://dx.doi.org/10.1063/1.5086509
http://dx.doi.org/10.1103/PhysRevLett.116.015902
http://dx.doi.org/10.1103/PhysRevLett.116.015902
http://dx.doi.org/10.1038/nphys1050
http://dx.doi.org/10.1103/PhysRevLett.97.195701
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imately extrapolated to the case where the normal dy-
namics would reach experimental time scales (i.e. would
increase by 15 decades). The range of the corresponding
ϕexp
G can be estimated by fitting the curve τα(ϕ) of the

normal dynamics fR = 1, fP = 0 with plausible func-
tional forms for τα(ϕ). The functional forms used to fit
τα(ϕ) and estimate ϕexp

G are the Vogel-Fulcher-Tamman

τα ∼ exp
(

A
ϕV FT−ϕ

)
or a form with non-singular acti-

vation energy τα = τ ′∞ exp
(
A′(ϕc − ϕ)2

)
. In agreement

with previous such inferences [41, 49], we obtain that the
swap dynamics fR = 1 has only slowed-down by 3 to 6
decades at ϕexp

G : the speed up conferred by swap is very
high.

FIG. 5: τα/τ
∗
α as a function of ϕ for a two-dimensional

system for different values of fR. The dotted lines
shows the values of ϕV FT and ϕP obtained by fitting
the normal dynamics simulation (fR = 1). These fits
are shown the insert panel.

Appendix C: Stretched exponents

Figures 6-(a,b) show βG in color as a function of fR and
fP for 2D and 3D system respectively where βG is the
value of β obtained at ϕG. These values were obtained

through the fitting of function Fs(k, t) and C(t) with
an stretched exponential function f(t) = exp(−(t/τα)

β),
where τα is the relaxation time. In both cases βG de-
creases as the system becomes more restricted.

FIG. 6: βG as a function of fR and fP for d = 2 (a) and
d = 3 (b). The color-code represents the value of βG.

Appendix D: Measure of lc(t)

To define a coarsening length lc(t), we first define re-
laxed particles. Particle i is a relaxed particle if Ci(t) ≤
0.5. Recall that Ci(t) represents the proportion of par-
ticles j that remain neighbors of particle i after a time
t. Then we consider that two relaxed particles i and j
belong to the same cluster if |rj(t)− ri(t)| < 2.4⟨R⟩. An
example of a growing length scale is presented in Fig.(7)
where relaxed particles are shown in red.

FIG. 7: Spatio-temporal evolution of the structural
relaxation in a 2d, fR = 0, fP = 0 and ϕ = 0.79, for
which τα = 2.6× 105. Red color indicates relaxed
particles. From left to right, the snapshots are taken at
times τα/10 (lc ≈ 2.7), τα/5 (lc ≈ 4.5) and τα/4
(lc ≈ 5.7).
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