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Opinion inertia and coarsening in the persistent voter model
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We consider the persistent voter model (PVM), a variant of the voter model (VM) that includes transient,
dynamically induced zealots. Due to peer reinforcement, the internal confidence ηi of a normal voter increases
in steps of size �η. Once it surpasses a given threshold, it becomes a zealot. Its opinion remains frozen until
enough interactions with the opposing opinion occur, resetting its confidence. No longer a zealot, the regular
voter may change opinion once again. This mechanism of opinion inertia, though simplified, is responsible for
an effective surface tension, and the PVM exhibits a crossover from a fluctuation-driven dynamics, as in the VM,
to a curvature-driven one, akin to the Ising model at low temperature. The average time τ to attain consensus is
nonmonotonic with respect to �η and reaches a minimum at �ηmin. In this paper we elucidate the mechanisms
that accelerate the system towards consensus close to �ηmin. Near the crossover at �ηmin, the intermediate region
around the domains where the regular voters accumulate (the active region, AR) is large. The surface tension,
albeit small, is sufficient to maintain the shape and reduce the domain fragmentation. The large size of the AR
in the region of �ηmin has two important effects that accelerate the dynamics. First, it dislodges the zealots within
the bulk of the domains. Secondly, it maximally suppresses the formation of slowly evolving stripes typical in
Ising-like models. This suggests the importance of understanding the role of the AR, where opinion changes are
facilitated, and the interplay between regular voters and zealots in disrupting polarized states.
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I. INTRODUCTION

Consensus [1] is an emergent property resulting from mul-
tiple interactions in a collection of agents where observation
and imitation lead to social learning. It is a characteristic of
a society that, through the repeated exchange between indi-
viduals, has arrived at a major agreement on important issues.
Social-influence models like those considered here are mostly
based on positive influence, with individuals adapting their
opinions to those prevalent among their neighbors. Attaining
consensus thus seems a natural consequence of the collec-
tive action of agents. However, many factors may deter or
delay such process, sometimes leading to polarization, with
the population divided into two or more antagonistic posi-
tions. In this case, local consensus is possible, as there is
a tendency to minimize in-group dissent while global con-
sensus is prevented because out-group differences intensify.
Many models have studied these processes with either dis-
crete or continuous opinions [1–3], attempting to understand
the underlying mechanisms and reproduce the experimental
observations [4,5]. The voter model (VM) [3,6–8] has agents
choosing from a discrete set of opinions (we here consider the
binary case) and imitating, in each step, one of their neighbors
irrespective of how different their opinions are. Its dynamics
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is thus driven by interfacial fluctuations [9]. This is differ-
ent from some spin magnetic models where local consensus
(domains of connected, parallel spins) grows because of the
surface tension and the minimization of the interfaces [10]. An
example is the zero-temperature dynamics of the Ising model
from a random initial state [10] (referred to here as IM0). Be-
fore entering the regime where the movement of the interfaces
between opposite spins is driven by curvature, these two-
dimensional (2D) systems are initially often brought close to
the random percolation critical point [11–14]. The geometric
details of the first stable percolating cluster [15,16] deter-
mine the asymptotic state of the system for zero-temperature
dynamics [17–19], whether fully magnetized (consensus) or
divided into parallel stripes of opposite spins, a segregated and
polarized state where the horizontal and vertical symmetry
is broken [17–22]. Some of these results have been exper-
imentally verified in the ordering kinetics of liquid crystals
[23–25], whose dynamics with a nonconserved order param-
eter is believed to be in the corresponding Ising dynamical
universality class [10,24]. Because of the emergent surface
tension in the model considered here, the phenomenology of
the curvature-driven systems will be relevant in the following
sections.

Although in the original VM the agents have no memory
beyond the previous step, we are interested in extensions
where the opinions have inertia and their switching probability
evolves in time. References [26–28], among others, consid-
ered inertia by changing the flipping probability as a function
of the time elapsed since the last flip. It is also possible to add
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a latent period, after each flip, when the flipping probability
remains low before eventually getting back to the usual voter
behavior [29,30]. Another form of inertia includes different
levels of confidence in a given opinion. Upon interaction with
the opposite view, instead of a sudden change of opinion as in
the VM, the agents may decrease its confidence [22,31] or first
become undecided, bearing an intermediate, neutral position
[32–34]. In many of these examples, although the microscopic
dynamics was slowed down, there is a macroscopic accelera-
tion and it is possible to reach the consensus faster than in the
original VM.

One interesting limit is when inertia dominates and the
opinions of some agents remain frozen, the so-called zealot
strategy [35–39]. Recently, the non-Markovian persistent
voter model (PVM) was introduced and studied [40]. Because
of the successive reinforcement, long enough persistent opin-
ions may turn a regular voter into a zealot, blocking its flipping
capability. However, this is a transient state: upon contact with
a different opinion, its behavior is reset to a normal voter. This
zealotlike behavior of highly confident agents is somewhat
akin to closed-mindedness, where opinions have an inertia
and need multiple interactions with different agents to be
overcome. Open-mindedness, or easy flipping, occurs in the
normal voter model where a single contact with a different
opinion is enough for an agent to change state. The time
persistence induced by the internal confidence makes it more
difficult to conform with the fluctuating opinions around the
agent, helping to reduce polarization. Indeed, the presence of
these self-induced frozen agents delays the opinion change,
which helps to avoid polarization and may accelerate the
dynamics toward consensus. This is at odds with the behavior
of nontransient zealots that, instead, may hinder consensus
[36,41].

In this work we further explore the PVM properties, uncov-
ering quantitative similarities with the dynamics of the IM0,
despite being a non-Markovian, detailed balance-violating,
non-Hamiltonian model. In particular, some of the questions
we attempt to answer are the following. How does the inertia
to change opinion affect the time to attain a global consensus?
When inertia induces an effective surface tension, how similar
is the dynamics to the IM0? How is the crossover from the
fluctuation to the curvature-driven regime? If the exit time
has a minimum, as in other models, which is the responsible
mechanism? Opposite zealots tend to segregate in the bulk
of domains, with normal voters occupying the interstitial re-
gions. How important is the width of these regions, and the
internal dynamics, for the evolution of consensus? The paper
is organized as follows. Section II defines the PVM while the
simulation results are presented in Sec. III, first for specially
prepared ordered initial states and then for the more general
case, with random initial configurations. These results are then
discussed in Sec. IV.

II. THE PERSISTENT VOTER MODEL

In the VM, the opinion of the ith agent (i = 1, . . . , N) is
represented by a binary variable si = ±1 and can be shared
with its neighbors. The PVM [40] extends it to include an
internal, positive, and continuous variable, ηi � 0, associated
with the individual confidence in its own opinion. When this

confidence exceeds a given threshold, ηi � φ (set, from now
on, to φ = 1), the opinion becomes frozen and the agent
behaves as a zealot. Although the opinion of a zealot is not af-
fected by the neighboring opinions, its associated confidence
may be. The dynamics is as follows: A focal agent i and one
of its nearest neighbors j are chosen. If i is not a zealot,
ηi < 1, it follows the usual imitation dynamics of the VM,
and its opinion si aligns with s j , if si �= s j . Regardless of what
happens with si, both ηi and η j evolve. If si flips, it is because
of the influence of j. On the other hand, if si is already equal
to s j , that reinforces the confidence of j. In either case, η j

increases, η j −→ η j + �η with �η > 0. For the focal agent
i, if both opinions were the same, the mutual reinforcement is
positive; otherwise, this single confrontation with a different
opinion is enough to reset its confidence (see Ref. [40] for a
more general version of the model):

ηi −→
⎧⎨
⎩

ηi + �η, if si = s j

0, if si �= s j .

(1)

As usual, one Monte Carlo step (MCS) consists of repeating
this procedure N times.

The only parameter is the confidence increment �η, which
controls how fast the threshold to become a zealot is ap-
proached. For small �η the formation of zealots is delayed
and the agent behaves as a regular voter for a longer time.
On the other hand, when �η is large enough, zealots easily
nucleate in the center of domains, away from agents with
an opposite opinion, inducing an effective curvature-driven
dynamics at the interfaces despite their roughness. As a con-
sequence, on regular 2D lattices, there is an intermediate
time regime in which the behavior resembles [40] the zero-
temperature kinetic Ising model (IM0) [10]. It is the interplay
between the mechanisms that underlies both the Ising and the
voter models that is responsible for the interesting properties
of the PVM discussed in the next sections. In some limiting
cases, the PVM becomes very similar to the marginal model
of Ref. [22] and the M = 2 case of Ref. [31].

III. RESULTS

Nonrandom initial states with specific geometries allow a
better understanding of particular features related to the initial
segregation and its subsequent evolution. In Secs. III A and
III B we consider two regular initial states: one with a flat
interface and the other with a circular interface, respectively,
separating regions with different opinions on a 2D square lat-
tice of finite size L. Then in Sec. III C, instead of a single pair
of tailored domains, we examine a random, fully disordered
initial configuration where the emergent coarsening dynamics
may evolve towards consensus through configurations resem-
bling the aforementioned circular or flat interfaces. In all cases
there exists a broad range of �η values that induce surface ten-
sion in the PVM, even without an energy cost associated with
the interface. These initial states and the related curvature-
driven dynamics are illustrated in the sequences shown in the
rows of Fig. 1. Unless explicitly stated, averages are computed
over sets with 103 or 104 samples.
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FIG. 1. Snapshots of the PVM with �η = 10−2 and the different
initial states discussed in the text. Different colors represent oppo-
site opinions, with regular voters (zealots) shown in darker (lighter)
colors. In all cases, zealots segregate, while normal voters occupy
the intermediate active region (AR). (Top) Flat initial interface with
opposite opinions distributed in equal-sized rectangular stripes. Once
the AR forms, it diffuses through the lattice and eventually collides
with the border, leading to consensus. (Middle) Circular initial in-
terface of radius R0 = 32 sites separating the group of like-minded
agents inside the circle from those outside. Both the AR and the
central region with zealots shrink until they both disappear. (Bottom)
Random initial state with each opinion chosen with equal probability.
Domains of different sizes form and evolve, resembling the IM0.

A. Ordered initial states: Flat interface

A possible initial state with a fully polarized configuration
consists of two parallel stripes of opposite opinions, where
all agents start as zealots, i.e., ηi = 1, ∀i. Regular voters are
created and accumulate in the intermediate active region (AR)
that separates the zealots, shown in Fig. 1 with darker colors.
Since the interest is in how the initial flat interface between
them evolves, we use open boundary conditions. A similar
flat interface would prevent the IM0 from evolving, with both
stripes lasting forever. Analogously, in the PVM with large
�η, the system remains mostly pinned due to the large frac-
tion of zealots. In this case regular voters turn into zealots
almost immediately, and the AR becomes very thin and, in
some cases, fragmented (e.g., for �η = 1 in Fig. 2, the width
is smaller than a single site, W < 1). Although small groups of
zealots may coexist in the interior of the AR, the average size
of the latter may be well approximated by W � L − z(t )/L, as
shown in Fig. 2, where z(t ) is the average number of zealots
at time t .

We are interested in those values of �η for which the
AR is not too thin and the emergent surface tension induces
novel behavior. There are many different interfaces in this
system; some cross the lattice, while others are closed (e.g.,
those of the small domains inside the AR). Their behavior
depends on the competition between zealot formation and
confidence resetting, setting the three distinct time regimes
of the AR shown in Fig. 2: (1) initial diffusive growth, (2)
stationary width, and eventually, (3) finite-size instability and

FIG. 2. Starting from a flat initial interface, the average width
W of the AR presents three very distinct regimes. For values of
�η not too large, the early behavior becomes diffusive as the reset
mechanism unfreezes the system while developing the AR. In the
second regime, the AR is stationary (horizontal dashed lines). The
smaller �η is, the longer the start of the plateau is delayed and the
larger W is. Interestingly, the time to attain consensus also decreases
until W ∼ L (in this case, L = 128, shown as a horizontal solid
line), when the VM is recovered and τ grows again. Lastly, the third
regime is when the system departs from the plateau. Due to finite-size
effects, the AR collapses after touching the border, and consensus is
soon attained (see the first row in Fig. 1).

collapse (leading to consensus). The early development of the
AR as W ∼ t1/2 is solely related to the diffusive dynamics
of the interfaces and is mostly independent of �η. The AR
increases because the zealots at the border interact with agents
with the opposite opinion, becoming regular voters after their
confidence is reset. A second interaction is necessary for the
opinion to change, but it depends on the next-return time of
one of the interfaces while it performs a confined random walk
inside the AR. The confidence keeps increasing because of the
continued interactions with like-minded neighbors, and if that
second contact takes too long, the voter may become a zealot
again, decreasing the AR. In this way the inward movement
of the zealot interfaces that close the AR compete with the
outward collisions with the opposite opinion that increase it.
When the two timescales are similar, the AR attains its station-
ary width Wstat, whose power-law increase, Wstat ∼ (�η)−0.59,
is shown in the inset of Fig. 3 for L = 128. By decreasing
the value of �η, the formation of zealots is delayed. Conse-
quently, the departure from the diffusive regime occurs later
and the AR becomes larger. For �η small enough, the AR
occupies the whole lattice, Wstat ∼ L, and one recovers the VM
(e.g., �η � 10−4 in Fig. 2).

Once fully developed, in the stationary regime, the width of
the AR remains stable for a considerable amount of time while
it diffuses through the lattice (see Fig. 1, top row). The depar-
ture of the plateau is a percolation event [15,16], triggered
when one of the opinions breaks and destabilizes the opposite
zealot stripe, spanning the whole lattice in both directions.
This percolating cluster may form multiple times, but once
stable, its opinion invades the system very fast, as seen by the
t−1 envelope in Fig. 2. As �η decreases, the AR gets wider
and closer to the border, decreasing the consensus time. The
minimum time is attained soon before the AR occupies the
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FIG. 3. The average time τ to attain consensus, rescaled by Lβ ,
as a function of �η for a flat initial interface. There is a minimum
of τ separating the VM-like behavior for �η < �ηmin from the
curvature-driven regime for �η > �ηmin. As L increases, �ηmin

shifts to smaller values as �ηmin ∼ L−1.5. Except for the smallest
size, we obtain an excellent collapse for �η > �ηmin with β � 3.2.
At �ηmin, on the other hand, τ seems to scale as L2.06 (not shown),
indicating very different underlying mechanisms. Inset: The power-
law behavior of the width of the AR in the stationary regime, Wstat ∼
(�η)−0.59. The minimum average time τ to attain consensus (vertical
dashed line) occurs close to the point where the width of the AR is
approaching L (horizontal dashed line).

whole system. At �ηmin the intermediate regime (the plateau)
disappears and the time to consensus is dominated by the
slower diffusive process that builds the AR, implying τmin ∼
L2. Once Wstat ∼ L, zealots are very rare and one recovers the
VM, the plateau reappears and lasts a long time. In Fig. 3
we show the average time τ to attain consensus, noticing
indeed the existence of a minimum value, τmin ≡ τ (�ηmin).
For larger values of L, τmin increases while �ηmin becomes
smaller. A good collapse around the minimum is obtained,
rescaling τ and �η with τmin ∼ L2.06 and �ηmin ∼ L−1.5, re-
spectively (not shown). For values �η � �ηmin, the behavior
corresponds to the VM and is mostly independent of �η.
On the other hand, for �η > �ηmin, except for the smaller
lattice (L = 16), all other sizes collapse very well when τ

is rescaled by Lβ , with β � 3.2. The different exponents in
these regions indicate that the underlying mechanisms ruling
the approach to consensus are different, as will become clear
after the discussion in the following sections.

B. Ordered initial states: Circular interface

Further insight can be gained from another controlled,
nonrandom initial configuration: a single droplet of radius R0

embedded in a sea of the opposite opinion [9]. The effective
surface tension constrains the cluster fragmentation to the AR
region around the circle, favoring a more rounded cluster.
This is illustrated in the middle row of Fig. 1 for �η = 10−2.
In comparison with the flat interface discussed in the pre-
vious section, the mean curvature accelerates the approach
to consensus. Figure 4 shows the average consensus time τ

as a function of �η for several values of R0, the relevant
linear scale for this case. In spite of the different geometry,
there is again a nonmonotonous behavior and τ presents a

FIG. 4. Rescaled average consensus time τ of a single droplet
embedded on a large lattice as a function of �η for different initial
radius R0. The location of the minimum deviates toward smaller
values, �ηmin ∼ R−1.5

0 , as in the previous case. The best collapse in
the region of the minimum was obtained with β � 1.95, while the
value used in the figure that gives an excellent collapse to the right
of �ηmin is β � 2.01.

minimum, i.e., there is an optimal amount of zealots that,
by not being willing to flip, help to accelerate the dynamics.
For �η � �ηmin, the dynamics is slower due to the excess
of zealots. Reducing �η, the approach to consensus is faster
because the AR increases, dislodging the zealots inside the
circle. The minimum occurs when the size of the AR almost
coincides with the whole drop, the residual surface tension is
barely enough to reduce the dispersal, and the corresponding
zealots inside the circle disappear. Decreasing �η even fur-
ther, �η 	 �ηmin, the droplet grows, becomes fragmented,
and invades the whole system. The large number of normal
voters in this case turns the dynamics slower, similarly to the
VM. Moreover, an excellent collapse is observed in Fig. 4,
τ ∼ Rβ

0 with β � 2.01, and �ηmin ∼ R−1.5
0 . However, τmin

seems to grow with a slightly different exponent, τmin ∼ R1.95
0 .

This difference is probably due to finite-size effects.
Finally, in Ref. [40] it was shown for the PVM that the

evolution of the disk area, A(t ), in analogy with Ising-like
models, may decrease linearly with time when the surface
tension becomes important, A(t ) = A(0) − λt , where λ is a
function of �η. However, in the region close to �ηmin there
seems to be a close correspondence with the Ising model in
the same conditions, i.e., λ � 1 (since the PVM needs two
steps to flip a zealot, it is twice as slow as the 2D Ising model
at T = 0). However, when the initial IM0 state is random,
the phenomenology is richer than the evolution of a single,
isolated domain. For example, the system approaches a critical
percolating state early in the dynamics [11,12,14], and its
characteristics determine whether consensus is approached
fast (as in the drop case) or slower (as in the flat interfaces).
Thus, it is important to understand what is the effect of a dis-
tribution of different domain sizes and shapes on the average
time to consensus. This is discussed in the next section.

C. Random initial states

To avoid correlations between the agents in the initial state,
we randomly choose si = ±1 with equal probability, while the
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FIG. 5. Rescaled average consensus time τ as a function of �η

for different system sizes and a random initial state. The two pan-
els show different scalings that collapse either the region around
�ηmin (bottom) and �η > �ηmin (top). In the top panel, a good
collapse is obtained with β � 3.4. In analogy with the previous
cases, the collapse in the bottom panel was obtained with τmin ∼ L2

and �ηmin ∼ L−3/2. Inset: Relative standard deviation σR and τ as
a function of �η for L = 64 showing nonmonotonic behavior. At
�ηmin where τ is minimum, the width of the distribution is also
close to its minimum value. At those points these quantities are quite
similar to the IM0 when considering, for the latter, only those initial
states that converge fast to consensus, without building intermediate
stripes. These values are indicated by small horizontal lines (for τ

it was doubled, see text). For very small values of �η, the σR also
coincides with the VM, which is indicated by a black, horizontal
straight line.

confidence variables are all set to ηi = 0. An example with
�η = 10−2 is shown in Fig. 1, bottom row. Again, the effec-
tive surface tension forms domains whose evolution is similar
to the IM0. As in the previous sections, the average exit time τ

is a nonmonotonic function of �η, and the results for several
lattice sizes L appear collapsed in Fig. 5. Around �ηmin, a
good collapse (bottom panel) is obtained with �ηmin ∼ L−3/2

and τmin ∼ L2 (although the minima are wide, and small vari-
ations in these exponents lead to similarly good collapses).
On the other hand, beyond this point, �η > �ηmin, the size
dependence of τ is given by the larger exponent β � 3.4
(top panel), indicating that the processes leading to consensus
are distinct in those regions. This value is similar to those
found in the literature for different but related models: 3.4
in the majority voter [42], 3.5 in the IM0 [17,43,44] (in this
case, diagonal stripes are the relevant ones), 3.6 in some
language models [45], and the confident voter model [22],

FIG. 6. Distributions h(τ ) of consensus time τ for different val-
ues of �η, L = 64, and a random initial state. For comparison, the
IM0 distribution is shown (black, solid curve). Notice that the value
of τ corresponding to the first peak is very close to the peak of the
�ηmin distribution (see previous section). The results for �η = 10−5,
with a single, broad peak, are close to the original VM.

etc. A simple argument, considering stripes as a collection
of independent 1D random-walkers, has been put forward in
Ref. [42], obtaining L3. Despite being close, the values found
in the above models are consistently larger. Velásquez-Rojas
et al. [31] improved on that result by including correlations
along the stripe, finding additional corrections and an effective
exponent larger than 3. A complete explanation for these
values seems to still be missing.

The relative standard deviation σR ≡ σ/τ , where σ is the
standard deviation, gives information on the width of the
distribution of consensus time compared with the average. It
also has a nonmonotonic behavior as �η increases, shown in
the inset of Fig. 5. As it was hinted in the previous section,
there is a quantitative similarity between the PVM and the
IM0 close to the minimum, with each time step of the latter
corresponding to two steps of the former. For the PVM with
random initial conditions, both τ and σR have a minimum
that seems to be indeed very close to the related values for
the IM0 (indicated by straight horizontal lines in the inset).
However, the comparison holds when only a subset of the
initial conditions for the IM0 are considered, as we discuss
below.

The distribution h(τ ) of the exit time for different values
of �η is shown in Fig. 6 for L = 64. For comparison, we also
included (solid black line) the two-peaked distribution for the
IM0. For large �η (e.g., �η = 1), the overall shape of h(τ )
also has two peaks [40], but they are displaced to larger times
due to the small width of the AR and the expressive number
of zealots slows down the dynamics. In both cases, because of
the emergent surface tension and the induced curvature-driven
dynamics, a random initial state is attracted to the percolation
critical point early in the dynamics [11]. Consequently, the
geometry of the first stable percolating cluster dictates the
timescale for attaining consensus. The larger peak, at smaller
times, corresponds to those initial states that formed, in the
beginning of the dynamics, a percolating cluster that wrapped
the lattice in both directions. Instead, those initial states that
form stripes [17,43], and whose evolution toward consensus
is much slower, contribute to the second peak. However, in
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the IM0 initial states that form diagonal stripes are included,
but those parallel to the lattice directions (see Ref. [44] and
references therein for a more general discussion) are not
since they freeze in a polarized state and do not evolve to
full consensus. In the small �η limit (e.g., �η = 10−5), be-
cause of the fluctuation-driven dynamics of the AR, stripes
are unstable and have no influence whatsoever on the exit
time. The behavior is then closer to the VM, with a single,
broad peak. Between these two extremes, there is, however,
an intermediate value, �ηmin, where at the same time stripes
are unstable but there is enough surface tension to accelerate
the dynamics and attaining the consensus time is faster. At
this value of �η, the distribution is close to its smallest width
and the peak corresponds to a value that is roughly twice as
large as the average τ for the IM0, as shown in the inset of
Fig. 5. As discussed in the previous section, this is because
many flips in the PVM take two steps since, for zealots, the
confidence must first be reset. As can be observed in Fig. 6,
for �ηmin, both the location of the peak and the width of the
distribution are small, in agreement with Fig. 5.

IV. CONCLUSIONS

We explored the persistent voter model (PVM), an opin-
ion model introduced in Ref. [40], analyzing the similarities
between the way it approaches consensus and how the zero-
temperature Ising model evolves toward a fully magnetized
state. In the PVM the confidence ηi is an internal attribute of
the agent’s opinion si, resulting from the previous interactions
with its neighbors. Above a given threshold for ηi, the zealot
behavior is induced and the opinion of that agent remains
frozen. Such a state is transient and persists while there are no
interactions with a different opinion, thus lowering its confi-
dence. This is very different from bounded-confidence models
[46–48], where the confidence is relative to the opinion being
imitated and from which it must not differ too much for a
change to occur. Although turning a zealot into a normal voter
takes at least two steps, the inverse requires 1/�η steps or
more. The parameter �η, in this sense, also sets the degree of
asymmetry in the process of changing opinion in the PVM.

Our main results concern the nonmonotonic exit time as a
function of the reinforcement parameter �η and the existence
of an optimal value for which the approach to consensus is
the fastest. Consensus time is minimized when the transient
polarized states (that, in the IM0, are associated with stripes)
are destabilized by the AR around each cluster. At the same
time, the effective surface tension is small to produce a large
but confined AR but enough to dislodge those zealots hidden
in the middle of domains, thus accelerating the dynamics.
In other words, around �η > �ηmin, the noise inherent to
the AR that destabilizes the stripes is large but not enough
to get rid of a residual surface tension. By eliminating the
stripes and keeping the curvature-driven dynamics, the path
to consensus is faster. Percolation phenomena at the early
steps of the dynamics have been shown to be essential in
framing both the temporal evolution and the asymptotic state
of curvature-driven systems like the Ising model [11–14,

17–20]. As mentioned in the Introduction, these properties
are important also for the PVM and have been experimen-
tally observed in different systems [23–25]. Here we have
shown that they are also relevant in a broader context, setting
the timescales for an opinion-exchanging population to attain
consensus while destabilizing intermediate polarized states.

The effective surface tension generated by the zealots in the
PVM is similar but not equivalent to a low, finite temperature
in the Ising model. Indeed, although a small temperature may
be useful to eventually escape from the local minima of flat in-
terfaces, it never allows the system to be fully magnetized. In
the PVM, close to �ηmin the surface tension is small, and the
AR acts as an effective noise that increases the roughness of
the interfaces. However, despite being large, it is not enough
to eliminate the curvature-driven decrease of domains toward
the absorbing state that is the consensus.

Finally, the simplicity and the interesting behavior of this
model may be used to test many important questions. For
example, its geometrical properties and the roughness of the
different interfaces along the path to consensus are worth in-
vestigating [49]. Particularly interesting are the time exponent
for the growth of the width of the AR, how its stationary value
relates to �η, and which is the corresponding universality
class [50–52]. Although still an open problem, these scaling
properties may be related to the dependence of τmin and �ηmin

with the system size L. Moreover, an important but often
neglected question is the correlation between spatial segre-
gation and polarization [53], in particular, when zealots are
present [54]. Polarization may have undesirable consequences
on social systems, facilitating the spread of false information,
creating the conditions for the introduction of public poli-
cies without evidence support and even the destabilization of
democratic societies. In turn, these effects further increase
the segregation, with people reorganizing their social con-
straints while strengthening their own bubbles. In our model,
bulk segregation easily increases the confidence of agents
deep inside the domains and apparently fosters polarization.
Nonetheless, for specific values of the parameters, we observe
an accelerated path to consensus. When does the dynamics
induce distancing or reduce spatial sorting of opposite opin-
ions? Is the level of generated segregation somehow related to
the coarsening process of attaining or preventing consensus?
Does segregation between different groups in society foster
opinion polarization? The PVM presents a clear pattern of
segregation involving polarized opinions and seems a promis-
ing model to tackle those questions. Finally, other fields in
which internal variables may have some influence on the state
change rate may also benefit from the results discussed here
(e.g., evolutionary game theory when the age of the agents is
taken into account [55,56]).
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